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ABSTRACT: High-fidelity mapping of amyloid-β (Aβ) plaques is critical for
the early detection of Alzheimer’s disease. However, in vivo probing of Aβ
plaques by commercially available thioflavin derivatives (ThT or ThS) has
proven to be extremely limited, as evident by the restriction of enrichment
quenching effect, low signal-to-noise (S/N) ratio, and poor blood−brain
barrier (BBB) penetrability. Herein, we demonstrate a rational design strategy
of near-infrared (NIR) aggregation-induced emission (AIE)-active probes for
Aβ plaques, through introducing a lipophilic π-conjugated thiophene-bridge
for extension to NIR wavelength range with enhancement of BBB
penetrability, and tuning the substituted position of the sulfonate group for
guaranteeing specific hydrophilicity to maintain the fluorescence-of f state
before binding to Aβ deposition. Probe QM-FN-SO3 has settled well the AIE
dilemma between the lipophilic requirement for longer emission and
aggregation behavior from water to protein fibrillogenesis, thus making a
breakthrough in high-fidelity feedback on in vivo detection of Aβ plaques with remarkable binding affinity, and serving as an
efficient alternative to the commercial probe ThT or ThS.

■ INTRODUCTION

Alzheimer’s disease (AD), a progressive neurodegenerative
brain disorder, has been considered an incurable condition.1−5

Like protein fibrillogenesis, the formation and accumulation of
amyloid-β (Aβ) plaques in the brain is thought to be a critical
pathological hallmark for early diagnosis of AD.6−12

Commercial thioflavin derivatives (ThT or ThS) are well-
known as gold standard probes for in vitro histological staining
amyloid fibrils.13−17 However, the inherent defects including
distorted signals from enrichment quenching effect on
fluorescence, inevitable noises from always-on pattern, and
limited blood−brain barrier (BBB) penetrability severely
hinder their translation into in vivo imaging (Figure
1A).18−20 Indeed, it is still far from achieving accurate
feedback information for in situ mapping of Aβ plaques.
Aggregation-induced emission (AIE)21−24 is a preferential

strategy to identify protein fibrillogenesis, particularly the light-
up characteristic associated with binding events during the
aggregation process. The design of such AIE probes, especially
extending the wavelength to the NIR region, is essentially
required for introducing an additionally hydrophobic π-

conjugated bridge.25−35 However, the undesirable initial
aggregation before the probe binding to Aβ aggregates
inevitably leads to a “false-positive” AIE signal.36−39 Therefore,
there is an urgent demand to overcome the dilemma between
the lipophilic requirement for longer emission and aggregation
behavior from water to protein fibrillogenesis. In this regard,
we have to increase water solubility of AIE probes to maintain
good miscibility in biological media, thus achieving the of f−on
fluorescence during the Aβ aggregation process for high
sensitivity and fidelity. We envision that NIR AIE-active probes
integrating a light-up characteristic in synergy with tunable
aggregation behavior could make a breakthrough to directly
map Aβ deposition in vivo.
Herein, we describe a molecular rational design strategy to

create ultrasensitive of f−on NIR probes for Aβ plaques, relying
on the alteration of substituted electron-donating and
hydrophilic functional groups to regulate well the aggregated
behavior (Figure 1). By virtue of harnessing this strategy, the
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Figure 1. Rational design of NIR AIE-active probes for Aβ deposition. (A) Commercial probe ThT based on the always-on pattern. (B, C) The
“step-by-step” strategy to address the inherent defects of commercial ThT and create ultrasensitive of f−on NIR probes: (i) introducing lipophilic π-
conjugated thiophene-bridge for extending the wavelength to the NIR region with BBB penetrability, (ii) replacing the ACQ to AIE building block,
and (iii) tuning the sulfonate substituted position for guaranteeing fluorescence-of f state before binding to Aβ deposition.

Figure 2. Significant photophysical characteristics of QM-FN-SO3. (A) Emission spectra of QM-FN-SO3 in a mixture of water−ethanol with
different ethanol fractions ( fe), λex = 500 nm. (B) Variations in I/I0 with fe, λem = 720 nm. (C) The fluorescence spectroscopic titration of QM-FN-
SO3 by stepwise addition of Aβ42 aggregates (0 to 9 μM) in PBS (pH = 7.4). (D) Fluorescence intensity at 720 nm of QM-FN-SO3 remaining
stable in fresh mouse serum over 24 h at 37 °C and various pH values. (E) Time-dependent absorbance of ICG, ThT, and QM-FN-SO3 under
sustained illumination. (F) Plot of the difference in I/I0 as a function of the concentration of QM-FN-SO3, QM-FN, ThT, and DCM-N after
response equilibrium with Aβ42 aggregates (10 μM).
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elaborated probe QM-FN-SO3 could achieve high-fidelity in
situ mapping of Aβ plaques, bestowing the following
extraordinary features: (i) ultrahigh signal-to-noise (S/N)
ratio with integrating background minimization and fidelity
signal amplification, (ii) remarkable binding affinity to Aβ
plaques with efficient BBB penetrability, and (iii) NIR AIE-
active emission with excellent photostability. As far as we
know, this is the first report of finely tuning molecular
aggregation for NIR light-up identifying and binding to Aβ
plaques in living mice, even being capable of higher-fidelity
mapping than commercial ThT for histological staining.

■ RESULTS AND DISCUSSION

Rational Design to Regulate Well the Aggregated
Behavior. We make full use of the “step-by-step” strategy to
address the inherent defects of commercial ThT (Figure 1).
First, the lipophilic π-conjugated thiophene-bridged unit is
covalently attached as extending a π-conjugated backbone for
NIR emission and matching the lipophilicity for BBB
penetrability. In this case, a significant fluorescent bath-
ochromic shift (∼100 nm) was observed from DCM-N to
DCM-FN. Sequentially, we focus on our group developed AIE
building block (QM, quinoline-malononitrile) to overcome the
enrichment quenching effect (from DCM-FN to QM-FN).
Finally, and most importantly, we alter the substituted position
of the sulfonate group for guaranteeing AIE probes in the
fluorescence-of f state with a minimized background (from
QM-FN and EDPS to QM-FN-SO3, Figure 1 and Scheme S1
in the Supporting Information). Taken together, our strategy
could solve well the AIE dilemma between the π-conjugated

structure requirement for NIR emission and aggregation
behavior, so that the elaborated AIE probe QM-FN-SO3
performs the desirable of f−on NIR characteristic during the
binding to Aβ aggregates.

Significant Enhancement of S/N Ratio with Integrat-
ing Background Minimization and Fidelity Signal
Amplification. Unlike the ACQ characteristic of ThT,
DCM-N, and DCM-FN (Figures S1−S3 in the Supporting
Information), incorporation of the red-emissive QM building
block in QM-FN, QM-FN-SO3, and EDPS (Scheme S1 in the
Supporting Information) made them possess unique AIE
characteristics.40,41 However, their aggregated states were
significantly different according to the substituent position
effect. For example, QM-FN was highly soluble in THF but
aggregated in water (Figures S4 and S5 in the Supporting
Information). Even though the hydrophilic sulfonate group
was introduced into the backbone as a para-substituted
electron-donating group, the resulting EDPS (Scheme S1)
still exhibited the normal AIE behaviors same as QM-FN.42 In
contrast, upon a change of the sulfonate group into the N-
substituted position in the QM building block, the exact
opposite solvent AIE phenomena were observed from QM-
FN-SO3. Specifically, it was found that water was a good
solvent for QM-FN-SO3, while ethanol was a poor solvent
(Figure 2A).
In consequence, QM-FN-SO3 became nonemissive in

aqueous solution, and its NIR fluorescence at 720 nm was
continuously intensified until the volume fraction of ethanol
( fe) in the mixed ethanol−water solvent was up to 95% (Figure
2B). Definitely, all these observations demonstrated that the

Figure 3. High-fidelity Aβ-driven of f−on NIR responses in solution and brain slices. (A, B) Ultrahigh S/N ratio of QM-FN-SO3 combined
background minimization, and fidelity signal amplification toward Aβ42 aggregates. (C) Remarkable affinity: QM-FN-SO3 (0−1 μM) effectively
displaces ThT from the ThT/Aβ42 aggregate complex. (D) High selectivity toward potential competitive species and Aβ42 aggregates. (E−J)
Histological staining of the brain slices in the hippocampus region from wild-type mice and Alzheimer’s disease (AD)-model (APP/PS1 transgenic)
mice using ThS and QM-FN-SO3, respectively. (K) The intensity profiles of the linear regions of interest (ROI) cross the brain slices. (L) The S/N
ratios of DCM-N, QM-FN, and QM-FN-SO3. (M−U) Adjacent brain sections from APP/PS1 mice stained with DCM-N, QM-FN, and QM-FN-
SO3 in the hippocampus region, the cortex region, and upon magnification of the cortex region (40×), respectively. (V, W) High-resolution mass
spectrum extracted from the brain tissue of wild-type mice after 5 min of intravenous injection of probe QM-FN-SO3 and ThT (2 mg kg−1),
respectively.
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distinct aggregation behaviors of these QM-based derivatives
were heavily dependent upon the alteration of the sulfonate
substituent position with finely regulating hydrophilicity. Here
the initial fluorescence-of f state of QM-FN-SO3 in aqueous
solution and significant enhancement of NIR fluorescence in
the aggregated state made it an ideal candidate for mapping
protein fibrillogenesis, like Aβ aggregates.
First of all, we investigated whether this AIE-active probe

QM-FN-SO3 could have a fluorescent response upon binding
to Aβ aggregates. As shown in Figure 2C, a significant NIR
fluorescence enhancement was observed from QM-FN-SO3
upon association with Aβ42 aggregates, and it took ∼40 min to
reach a plateau (Figure S6 in the Supporting Information).
This intensity increase was also accompanied by a blue-shift in
the emission spectra. It could be interpreted that QM-FN-SO3
entered into the hydrophobic pockets and then bound to the
aggregated amyloid fibrils with the help of the binding unit
N,N′-dimethylamino,43−45 resulting in the decrease of
conformational freedom and rotational restriction of QM
fluorophore.46−49 The SEM images of QM-FN-SO3 without
and with Aβ42 aggregates further confirmed the binding
process (Figure S7 in the Supporting Information). Notably,
QM-FN-SO3 was completely unaffected with pH changes
ranging from 3 to 12 and showed excellent stability in fresh
serum over 24 h (Figure 2D). Specifically, the time-dependent
absorbance of QM-FN-SO3 upon continuous irradiation
demonstrated that it had a much longer half-life time
(∼2400 s) than those of ThT (∼480 s) and ICG (∼20 s,
FDA-approved NIR contrast agent) (Figure 2E). Obviously,
these remarkable characteristics of QM-FN-SO3 confirmed
that it could serve as a high-contrast agent for the detection of
Aβ plaques (Figure 2F).
Initial background minimization and fidelity signal amplifi-

cation of QM-FN-SO3 were critical for ultrasensitive detection
of Aβ plaques. In Figure 3A, in the absence of Aβ, the
obviously undesirable background of ThT, DCM-N, and
DCM-FN was observed because of their inherent fluorescent
properties in aqueous solution. On the other hand, even for
AIE-based QM-FN and EDPS, the unexpected AIE-induced
background made it difficult for them to really reflect the Aβ
plaques, owing to the “false-positive” AIE signal. In fact, QM-
FN-SO3 exhibited a very low background, which was only 1/
28, 1/3, 1/15, and 1/10 times those of of ThT, DCM-N,
EDPS, and QM-FN, respectively. It could be ascribed to its
miscibility in aqueous solution, which thereby minimized the
AIE background. Thus, this low background of QM-FN-SO3
provided a prerequisite for an ultrahigh S/N ratio. Indeed,
QM-FN-SO3 showed a remarkable S/N ratio (VS/N = 50) with
binding to Aβ42 aggregates, far exceeding those of ThT (VS/N =
6), DCM-N (VS/N = 3), and QM-FN (VS/N = 5) (Figure 3B
and Figure S8 in the Supporting Information). Definitely, this
significant S/N ratio of QM-FN-SO3 was acquired by
integrating background minimization and fidelity signal
amplification.
High Binding Affinity. Importantly, binding affinity was

another crucial factor for probes to accurately trace the Aβ
plaques. We then elaborated the displacement assay of QM-
FN-SO3 against ThT-bound Aβ42 fibrillar aggregates (Figure
3C and Figure S9 in the Supporting Information). Remarkably,
with the addition of QM-FN-SO3 to the ThT/Aβ42 aggregated
complex, a continuous fluorescence decay of ThT was
observed at 482 nm; meanwhile, a corresponding NIR
fluorescence enhancement was found at 665 nm, indicating

the transformation from ThT/Aβ42 to QM-FN-SO3/Aβ42
aggregates. These results demonstrated that QM-FN-SO3
showed higher binding affinity with Aβ42 aggregates than
that of ThT. Furthermore, the specificity of QM-FN-SO3 for
Aβ deposition was also evaluated with potentially competitive
species including amino acids, enzymes, serum markers, and
metabolic substances. As expected, QM-FN-SO3 did not show
any fluorescence response to all these species (Figure 3D),
including the Aβ42 monomer (Figure S10 in the Supporting
Information). Thus, the highly selective NIR fluorescence
response of QM-FN-SO3 with strong binding affinity made it
promising for obtaining high-fidelity information, along with
initiating the designated of f−on response to Aβ plaques.
With the assistance of the high binding affinity with Aβ

plaques (Figure 3C and Figure S11 in the Supporting
Information), we further confirmed that QM-FN-SO3 could
completely avoid self-quenching distorted signals from
commercially available Aβ probes with a concentration-
dependent characteristic.50−58 As shown in Figure 2F, the
binding capacity of the probes with Aβ plaques was
investigated. When the probe binding to Aβ deposition was
saturated, even further upon addition of probes, the
fluorescence intensities of ThT and DCM-N were sharply
decreased. In contrast, under the same condition, QM-FN-SO3
produced only slight changes. It was implied that the AIE effect
of QM-FN-SO3 was highly capable of really reflecting the Aβ
plaques with high spatial−temporal feedback, exactly achieving
the of f−on behavior with proper water solubility.

In Vitro Mapping with High-Fidelity Aβ Plaque
Information. To assess the performance of QM-FN-SO3 as
an alternative to the commercial probes, in vitro fluorescent
staining of Aβ plaques in slices of brain tissue from AD-model
(APP/PS1 transgenic) mice and wild-type mice was carried
out (Figure 3E−U). In fact, commercial Aβ probes such as
thioflavin-S (ThS, a gold standard probe for histological
staining Aβ plaques) suffered from the limited S/N ratio due to
the inherent initial background and ACQ effect. As anticipated,
the specific staining of Aβ plaques was observed in the brain
slices of the APP/PS1 mice with probe QM-FN-SO3 (Figure
3E−J). Notably, the presence and distribution of Aβ plaques
were nearly consistent with the results of staining adjacent
brain slices using ThS, while there was no obviously plaque
labeling in the wild-type mice brain (Figure 3E,H).
Impressively, upon quantitatively evaluation of the S/N ratio
of DCM-N, QM-FN, and QM-FN-SO3 in brain tissues from
APP/PS1 transgenic mice (Figure 3M−U), QM-FN-SO3
showed the highest S/N ratio over all other probes (Figure
3L). These results demonstrated that QM-FN-SO3 could
specifically in vitro stain Aβ plaques in brain slices.
In particular, QM-FN-SO3 showed more abundant Aβ

plaque feedback than that of ThS. These additional light-up
NIR fluorescent signals of QM-FN-SO3 were discovered (the
arrows referred places in Figure 3I,K). In this case, the ACQ
effect of ThS could made false signals to some degree, along
with inaccurate Aβ deposition feedback, while these were not
observed in brain slice staining by ThS (Figure 3F). In
contrast, QM-FN-SO3 could point out and amplify the fidelity
signals because of stronger emission during concentration
enrichment with Aβ deposition. These in vitro experiment
results verified that the of f−on NIR AIE-active probe QM-FN-
SO3 could attain high-fidelity Aβ plaque information in brain
tissue slices.
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In Vivo NIR Imaging with BBB Penetrability. Having
confirmed Aβ-driven specific NIR light-up responses in brain
slices, we further investigated whether this probe could possess
desirable biocompatibility for application in living animals. The
calculated log P values of all probes were acquired to assess the
BBB penetrability.59 Obviously, the log P value of QM-FN-SO3
(1.09) was much higher than that of ThT (0.16), indicative of
its potential for matching BBB penetrability. The shaking-flask
experiment analysis further confirmed that QM-FN-SO3
showed better lipophilicity than that of ThT (Figure S12 in
the Supporting Information). In fact, via intravenous injection
of ThT and QM-FN-SO3 (perfused with PBS), respectively,
high-resolution mass spectrometry from the brain homogenate
extraction of wild-type mice could be obtained to verify the
BBB penetrability (Figure 3V,W). Clearly, the peak at m/z
541.1371 (corresponding to [QM-FN-SO3]

−) was observed
while the peak of ThT was not be found from the brain
homogenate, demonstrating the BBB penetrability of QM-FN-
SO3.
To further confirm the feasibility of QM-FN-SO3 for in vivo

imaging Aβ plaques, 22-month-old male AD-model (APP/PS1
transgenic) mice and age-matched wild-type mice were
employed to observe the brain kinetics by intravenous
injection. As shown in Figure 4 and Figure S13 in the

Supporting Information, nearly all of the fluorescence signals
were centralized in the brain compartments and could be
captured very efficiently. In particular, the fluorescence
intensity of QM-FN-SO3 in the brain regions of the APP/
PS1 mice was much higher than that in the control of wild-type
mice at 20 min after postinjection, indicative of specifically
trapping Aβ plaques in vivo with probe QM-FN-SO3. In
addition, the cell viability of the probe QM-FN-SO3 by the
MTT assays demonstrated its favorable biocompatibility
(Figure S14 in the Supporting Information). Obviously,
these direct visualization results confirmed that QM-FN-SO3
could cross the blood−brain barrier and label Aβ fibrils in vivo.

Ex vivo histology of QM-FN-SO3 binding to Aβ plaques in
APP/PS1 transgenic mice was carried out to further validate
the in vivo performance. After 20 min of intravenous injection
of QM-FN-SO3, a higher number of Aβ plaques were observed
in the brain slices from APP/PS1 mice (Figure 4E). More
importantly, we also observed the excellent colocalization of
Aβ plaques during staining the same section with anti-Aβ
antibody-2454 (Figure 4F). It was further confirmed that the
in vivo signal was undoubtedly resulting from QM-FN-SO3
specifically binding to Aβ plaques.

■ CONCLUSIONS

In summary, the work focuses on how to develop NIR AIE-
active probe QM-FN-SO3 to circumvent the inherent
limitation of commercial probes ThT and ThS, for meeting
the high-fidelity requirements to detect Aβ plaques in vivo. In
the “step-by-step” rational design strategy, we introduced a
lipophilic π-conjugated thiophene-bridge, then replaced the
ACQ to AIE building block, and finally tuned the substituted
position of the sulfonate group. Consequently, probe QM-FN-
SO3 simultaneously eliminated both the self-quenching
distorted signal from ThT and the “false-positive” signal
from initial aggregation AIE probes before binding to Aβ
plaques. In vitro and in vivo experiments provided solid
evidence of the accurate feedback of mapping Aβ plaques. We
have for the first time solved the dilemma between the
lipophilic requirement for NIR emission and aggregation
behavior from water to protein fibrillogenesis, making a
breakthrough in high-fidelity detection of Aβ plaques. Probe
QM-FN-SO3 exhibited extraordinary features of ultrahigh S/N
ratio, remarkable binding affinity with BBB penetrability, and
high-performance NIR emission. This study provides a
promising strategy for the design of NIR AIE-active probes,
serving as an efficient alternative to the commercial probes,
paving a new pathway for insights into protein fibrillogenesis in
vivo.
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